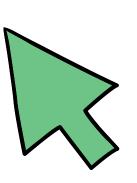
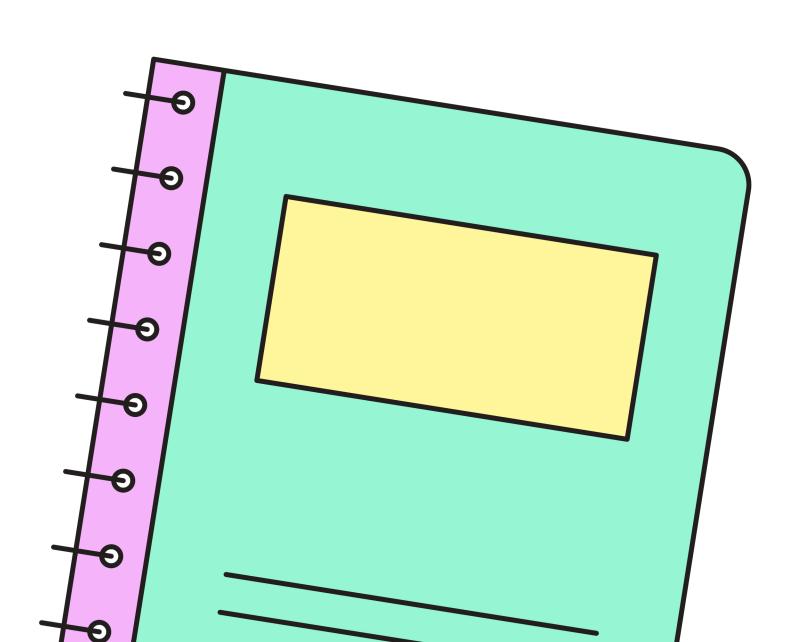

RoboXCraft


Crafting Imagination Into Reality



USER EXPERIENCE

Arduino Solar Tracking Project

Arduino Solar Tracking System – User Manual

Package Contents

- Arduino UNO (or compatible board)
- Dual-axis servo mount (pan-tilt mechanism)
- 2x Servo motors (SG90 or MG995 recommended)
- 2x Light Dependent Resistors (LDRs)
- Resistors (10kΩ) 2 pcs
- Solar panel
- Jumper wires
- Breadboard or PCB

Overview

The Arduino Solar Tracking System is a smart device designed to automatically align your solar panel with the direction of the most intense sunlight using real-time feedback from LDRs. This helps maximize solar energy efficiency throughout the day.

- **Calibration Tips**
 - Test each LDR using analogRead() in a separate sketch to confirm it's working.
 - Adjust servo limits (0–180) if they move too far or not enough.
 - Use Serial.print() to debug real-time LDR values.
- Power Supply
 - Arduino via USB or 9V adapter.
 - Servo motors via separate 5V/6V power supply for better torque and stability.
- Testing Procedure
 - 1. Upload the code to the Arduino.
 - 2. Power the system.
 - 3. Shine a flashlight from various directions to test LDR detection and servo movement.
 - 4. Place under sunlight and observe alignment.
- Troubleshooting IssueCauseFix
- Servo not moving OBOXCRAFT
- Low power or wrong pin
- Check external power and wiring
- Panel oscillates
- Too sensitive
- Increase delay or threshold in code
- **LDRs**_onot responsive
- Damaged sensor or incorrect wiring
- Replace/check connections

Maintenance

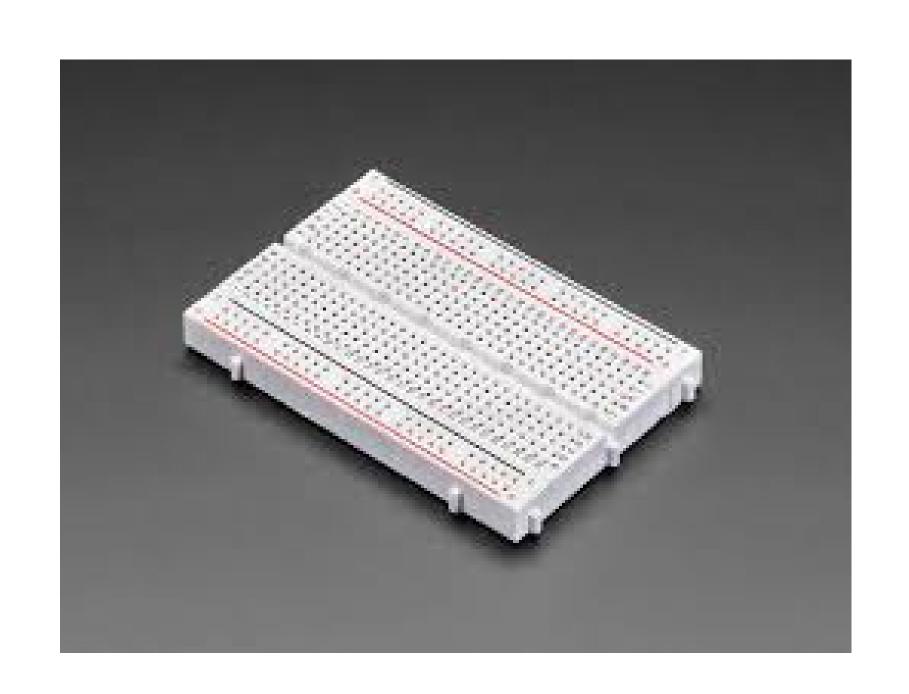
- Clean LDRs and panel surfaces regularly.
- Protect the circuit from rain/dust with a weatherproof enclosure.
- Project Upgrade Ideas
 - Add OLED display for LDR values.
 - Implement real-time clock (RTC) for hybrid tracking.
 - Integrate data logging or remote monitoring.

Working Principle

- LDRs detect the intensity of sunlight from different directions.
- The Arduino reads LDR values and compares them.
- If sunlight is stronger on one side, the servo motor moves the panel toward that direction.
- This process ensures maximum exposure to sunlight throughout the day.

Circuit Connection

- Connect LDR 1 & LDR 2 to AO & A1 of Arduino.
- Connect Servo Signal Pin to D9 of Arduino.
- Power the circuit using 5V from Arduino or an external source.


```
/*Solar tracking system
//Include the servo motor library
#include <Servo.h>
// Define the LDR sensor pins
#define LDR1 A0
#define LDR2 A1
//Define the error value. You can change
it as you like
#define error 10
//Starting point of the servo motor
int Spoint = 90;
//Create an object for the servo motor
Servo servo;
```

```
void setup() {
//Include servo motor PWM pin
servo.attach(11);
//Set the starting point of the servo
servo.write(Spoint);
delay(1000);
void loop() {
//Get the LDR sensor value
int ldr1 = analogRead(LDR1);
//Get the LDR sensor value
int ldr2 = analogRead(LDR2);
//Get the difference of these values
int value1 = abs(ldr1 - ldr2);
int value2 = abs(ldr2 - ldr1);
//Check these values using a IF condition
if ((value1 <= error) | (value2 <= error)) {
```

```
} else {
if (ldr1 > ldr2) {
Spoint = --Spoint;
if (ldr1 < ldr2) {
Spoint = ++Spoint;
//Write values on the servo motor
servo.write(Spoint);
delay(80);
                ROBOXCRAFT
```

Component Used

Component Used

